OUR SOLUTIONS

Our customers include original equipment manufacturers and aftermarket distributors, for whom we deliver a wide range of products. Our offerings include thermoset and thermoplastic polyurethane belts, rubber timing and V-belts, flat belts, multi-rib belts, engineered/specialty belts, pulleys, clamping plates, timing bars and complementary products that can be customized for your application.

Engineered belts are the pride of Megadyne. Customers who purchase our fabricated solutions first experience the expertise of our professionals and are then amazed by the final product. Each fully customized power transmission belt, complete with all accessories, is precisely tailored to meet the exact requirements of the customer's application.

Welcome to Megadyne Power **Transmission Solutions**

Megadyne supplies complete and innovative solutions for broad applications and industries such as material handling, elevators, machine tools, food industry equipment, packaging, fitness, wood, marble, and ceramics... just to name a few of the many industrial markets where you'll find the Megadyne name.

MARRIE & CERAMICS

WE MAKE YOUR BUSINESS MOVE

INDUSTRY APPLICATIONS AT GLACE

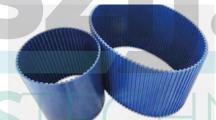
FOOD INDUSTRY
PACKAGING INDUSTRY
OTHER INDUSTRIES

FOOD INDUSTRY

FOOD-APPROVED MATERIALS IN HIGH-SPEED AND PRECISION HANDLING APPLICATIONS

Megadyne offers a range of belts offering high-speed and precision handling performance, made by FDA materials and EU approved certifications, designed to offer a high-end solution for any food handling applications.


MAIN APPLICATIONS


- Meat Slicing
- Inspection Line
- Vertical Form Fill and Seal
- Horizontal Form Fill and Seal
- General Conveying
- Sausage Belts

Additionally, Megadyne offers a wide variety of cover materials, which are food approved. We have diverse Thermoplastic PU, PVC, Rubber, and Silicone covers applicable for any kind of food application. Combining the belts with an additional cover does not meet the same standards as the base belt. Contact Megadyne for more information.

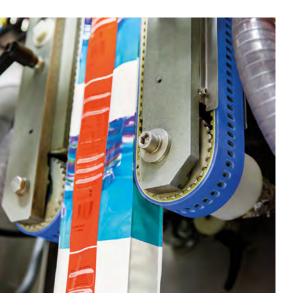
RECOMMENDED PRODUCTS

MEGALINEAR FC

New to the MEGALINEAR family, and introduced for food processing and packaging applications, MEGALINEAR FC is manufactured with food-contact approved materials, according to European regulations EU 1935/2004, EU 10/2011, and EU174/2015. MEGALINER FC is manufactured in T5/T10 pitch without gap between the teeth and is available in a smooth surface or backing profiles, such as Spike Top, Noppen, and others, for all kinds of conveying and processing applications. These advanced foodcontact synchronous belts have excellent resistance to chemicals and corrosion and are designed for use in wet and dry food-contact applications. The homogeneous belt design ensures a significantly greater service-life with a high-level of hygienic integrity.

MEGAPOWER FC

Designed for power transmission and certain synchronous conveying applications within the food and packaging industry where the polyurethane chemistry is beneficial for oily environments and where rigorous wash down procedures are common. Featuring stainless steel cords and food-compliant blue polyurethane according to European regulations EU 1935/2004, EU 10/2011, and EU174/2015, MEGAPOWER FC is ideal for both wet and dry applications thanks to its good chemical and corrosion resistance in humid and wet environments. MEGAPOWER FC handles your high acceleration, multi stop/start synchronous food product handling drives with ease.


FCM BELTS

MEGALINEAR FCM and MEGAFLEX FCM are available in Light Blue Thermoplastic PU and stainless-steel cord. This combination conforms to an FC approval for the belt according to EC 1935/2004. Kevlar® cords. They are available for MEGALINEAR FCM with T10 and AT10 without gap.

Thanks to the belt construction and cord pitch, FCM belts are also suitable for heavy load conveyor and power transmission applications, for example linear units for Food processing.

Visit www.megadynegroup.com for more information on our product offering in the Food Industry.

VERTICAL FORM FILL SEAL BELTS

- Homogeneous moulded covers that provide uniform wear surfaces free of hard spots to increase performance
- Covers without any splices or seams for increased reliability
- Continuous, durable wearing covers that provide consistent friction for life of the belt
- Non-glazing compounds that offer excellent grip and slip prevention
- Excellent abrasion resistance for an increased trouble-free lifespan
- Excellent flexibility without cracking or tearing
- Standard OEM replacement belts for all major manufacturers
- CNC machined precision modifications such as slots, countersunk holes, grooves, and profiles within precise tolerances for outlasting performance
- Metal Sealing Bands available

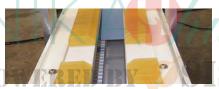
PACKAGING INDUSTRY

CUSTOMERS RELY ON MEGADYNE'S FULL LINE OF BELTING SOLUTIONS FOR THE PACKAGING INDUSTRY, INCLUDING A WIDE RANGE OF STANDARD AND CUSTOMISED PRODUCTS

Megadyne provides its customers with innovative solutions to specific Packaging Industry needs, offering a wide selection of belt constructions and manufacturing processes thanks to years of industrial experience. Megadyne products are used in packaging equipment from the start to the finish of the packaging line.

Our portfolio of synchronous and non-synchronous belts, including special cover materials, cleated belts, machined modifications, and other fabrications types, deliver the solutions for a wide variety of applications including:

- Carton forming/box erecting/box closing
- Filling
- Blow molding machines
- Capping lines
- Cartoning lines
- Check weighing
- Feed lines
- Filling lines
- Form, fill, and seal
- Wrapping and sealing
- Labeling



IN-LINE FILLING BELTS

After filling of liquids, capsules, and pills; capping machines apply, tighten and secure caps of varying material types to bottles. and containers made of glass, PET, PVC, PP, LDPE, and HPDE.

Capping machines are used to complete the packaging of food products, beverages, household products, pharmaceuticals, and industrial goods. Megadyne's Specialty Belt Division can manufacture the correct frictional and cushioning types of belts to apply torque and twisting motion to securely lock the cap in place.

FOOD PACKAGING

On the Food Packaging, MEGALINEAR timing belts joined with PPJ joint system and equipped with FDA cleats

- exceed the performance of non-synchronous flat belts and guarantee the most efficient product separation without belt slippage, lack of synchronization, expensive downtime, high-cost of spare parts.

ENGINEERED & SPECIALTY BELTS

Visit www.megadynegroup.com for more information on our product offering in the Packaging Industry.

OTHER INDUSTRIES

AUTOMOTIVE & TYRE

Working hand in hand with our partners in the Automotive and Tyre industry led us to create belts for vacuum, magnetic applications, the transport of raw-rubber, and metal stock. Our customised belts serve different applications, ensuring excellent cut and wear-resistance, high-strength for lifting, good oil and chemical resistance, low friction for accumulation, and non-marking high grip where needed.

- Sheet Metal Processing
- Glass tempering line and storage
- Car chassis assembly
- Skid conveyors applications
- · Tyre manufacturing

ALUMINUM EXTRUSION

Our belting products are used in a wide range of applications to ensure materials are transported successfully throughout each stage of aluminium production. Megadyne offers tailored solutions to meet your handling requirements such as non-marking surfaces and high-temperature product handling.

CERAMIC, GLASS, BRICK & STONE Megadyne offers urethane and rubber materials that can be fitted to your application. We offer high-friction and excellent wear-resistance as well as cover modifications to assist in product handling, such as holes and angular or lateral machining.

- **Cutting Lines**
- Beveling Lines
- Drilling Lines

Polishing Lines Tempering Lines

Sealing Lines

MATERIAL HANDLING

High-strength and precision repeatability are essential components required in lift movement and material handling. With a broad range of urethanes and cord options, Megadyne can supply the right belt for your application.

- Live Roller Conveyors
- Cross Sorters
- Pallet and Transport Platform Conveyors
- Gapping Conveyors
- Incline Conveyors

- Line Conveyors
- Diverters
- Offload, Sorting and Delivery Conveyors
- ASRS Systems

OTHER INDUSTRIES

MEDICAL INDUSTRY

Megadyne offers several synchronous and non-synchronous clean running options for both light-duty power transmission, positioning, and product handling applications.

- Medical Equipment:
 - MRI Tables
 - Blood Centrifuge
- Automated Pharmaceutical Dispensers
- Medical Instrumentation

ROBOTICS & AUTOMATION

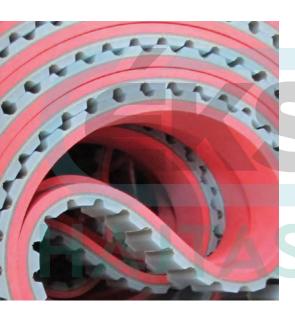
Urethane and rubber high-strengh synchronous belts are being increasingly incorporated into robotic positioning applications; these commonly include pick and place systems, and applications where positional accuracy is required.

- 3D Printing
- Fiber Optics
- X,Y Drives
- Swimming Pool Cleaners
- Security Camera Positioning
- Theatre Lighting Positioning
- Automotive Assembly Welding Systems

PAPER & PRINT

From a broad range of elastomer options, Megadyne can provide the right combination of substrate and cover materials to yield wear-resistance, the right coefficient of friction, and antistatic requirements. Megadyne specializes in modifications such as holes or slots, counter slots, and vacuum draws.

- Banking Equipment
- Printing Equipment
- Bindery Equipment
- Mail Handling Equipment
- Collating Machines
- Ticketing Machines
 - Newspaper Equipment
 - Personal Hygiene Products -Diapers, Wipes


WOOD

Within the Wood Industry, Megadyne is able to meet all requirements - even the most challenging - with standard and specialty belts.

- Veneer Stacker
- Plywood Layup & Pressing
- Press Exit, Trimming & Inspection
- Wood Panel Conveyor

ENGINEERED & SPECIALTY BELTS


... AND MANY MORE...

COVERS

POLYURETHANE PVC NATURAL RUBBER NITRILE-NEOPRENE **POLYCHLOROPRENE EPDM-VITON-HNBR** OTHER COATING SILICONE

PRODUCT AVAILABILITY

In the Sample Book

COVERS

MEGADYNE IS A GLOBAL LEADER IN THE DESIGN AND MANUFACTURING OF SPECIALTY AND ENGINEERED BELTS WITH COVERS

Why is this the case? It starts with our understanding of polymers. From rubber to silicone, to urethane, to impregnated fabrics, internal knowledge at Megadyne as well as that obtained from our other AMMEGA sister companies is matched with our broad process offering.

At Megadyne, we mould rubber, spin cast urethane, and Hytrel®, apply silicone and neoprene coating, spray urethane foam, and laminate materials made of urethane, PVC, rubber, fleece, artificial leather, silicone, and Kevlar®.

With our vertically integrated business model, matched with our multiple manufacturing processes, and state-of-the-art modification equipment, Megadyne is well positioned to offer you high-quality, consistently produced products. No one manufacturer of Engineered Specialty belts provides more solutions.

IMPORTANT COVER INFORMATION

The following information provides explanation for the asterisk found within the cover section (8-34).

- *Coefficient of Friction (CoF): Determined by the static value against a steel guide; however, consideration must be given to the specific environmental conditions (contamination and/or wear resistance) and aging on the cover
- **Oil Resistance: Dependant upon the exact chemical nature and viscosity of the oil
- ***Ground Covers can yield a tighter tolerance of +/-0.3mm if required
- ****Minimum Pulley Diameter (Pd) = desired cover thickness x given multiplier: i.e. 2mm cover thickness x 30 (given) = 60mm min. Pd. If the minimum diameter of base belt is larger than the calculated cover minimum Pd, use the larger of the two values.
- *****Minimum Pulley Diameter (Pd) = Total Belt Thickness (TK)x5

-7/000000			
	AVAFC 60	AVAFC 70	AVAFC 85
	PU 1	PU 2	PU 3
SOURCE LOCATION	ITALY, USA	ITALY, USA	ITALY, USA
COLOURS	0	0	0
RAW MATERIAL	PU	PU	PU
HARDNESS (ShA)	60	70	85
COVER AND BELT COHESION METHOD	CO-EXTRUSION	CO-EXTRUSION	CO-EXTRUSION
STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm)	2/3/4	2/3/4	2/3/4
WORKING TEMPERATURE (°C)	-20 /+80	-20 /+80	-20 /+80
COEFFICIENT OF FRICTION* (CoF)	0.65	0.65	ED BY 0.60
MIN. PULLEY DIAMETER	x 40	x 40	x 40
WATER RESISTANCE	$\bullet \bullet \bullet \bigcirc$	••••	•••
ABRASION RESISTANCE	$\bullet \bullet \bullet \bigcirc$	•••	••••
OIL RESISTANCE**	$\bullet \bullet \bullet \bigcirc$	••00	•••
FEATURES/BENEFITS	High-friction on smooth and dry surfaces. Available in different colour under respecting a MOQ.	High-friction on smooth and dry surfaces. Available in different colour under respecting a MOQ.	Very good wear-resistance. Suitable for conveying sharp-edged materials.
FOOD CONTACT APPROVED	NO	NO	NO
FDA APPROVED			
EU REGULATIONS			
INDUSTRIES			

	PU FISHBONE	PU RIBBED	NP 385	
		=		
	PU 4	PU 5	PU 6	
SOURCE LOCATION	ITALY, USA	ITALY, USA	ITALY	
COLOURS	0	0	0	
RAW MATERIAL	PU	PU	PU	
HARDNESS (ShA) COVER AND BELT	70	70	70	
			CO-EXTRUSION	
COHESION METHOD	CO-EXTRUSION	CO-EXTRUSION	CO-EXTRUSION	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER	4.3 +/- 0.5	2.7 +/- 0.5	CO-EXTRUSION 4 4/- 0.3	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm)	4.3	2.7 +/- 0.5	4	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C)	4.3	2.7		
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE	4.3	2.7 +/- 0.5	4	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF	4.3 +/- 0.5 -20 /+80	2.7 +/- 0.5 -20 /+80	+/- 0.3 -20 /+80 SIS	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (COF)	4.3 +/- 0.5 -20 /+80 0.60	2.7 +/- 0.5 -20 /+80 0.60	-20 /+80 SIS 0.60	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	4.3 +/- 0.5 -20 /+80 0.60 × 30	2.7 +/- 0.5 -20 /+80 0.60 x 35	-20 /+80 SIS 0.60 x 40	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (COF) MIN. PULLEY DIAMETER WATER RESISTANCE	4.3 +/- 0.5 -20 /+80 0.60 × 30	2.7 +/- 0.5 -20 /+80 0.60 x 35	-20 /+80 SIS 0.60 x 40 ••••	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	4.3 +/- 0.5 -20 /+80 0.60 x 30 • • • • •	2.7 +/- 0.5 -20 /+80 0.60 x 35 ••••	-20 /+80 SIS 0.60 x 40 ••••	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE**	4.3 +/- 0.5 -20 /+80 0.60 x 30 •••• ••• ••• Suitable for wet environments where	2.7 +/- 0.5 -20 /+80 0.60 x 35 •••• ••• ••• Reduced contact point for conveying	-20 /+80 SIS 0.60 x 40 •••• ••• For oily conveyor conditions. Contact	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS	4.3 +/- 0.5 -20 /+80 0.60 x 30 •••• ••• ••• Suitable for wet environments where friction and drainage are necessary.	2.7 +/- 0.5 -20 /+80 0.60 x 35 •••• •••• •••• Reduced contact point for conveying smooth products. Allows drain of liquids.	-20 /+80 SIS 0.60 x 40 •••• •••• For oily conveyor conditions. Contact only on top of the Noppen.	
STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (COF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS	4.3 +/- 0.5 -20 /+80 0.60 x 30 •••• ••• ••• Suitable for wet environments where friction and drainage are necessary.	2.7 +/- 0.5 -20 /+80 0.60 x 35 •••• •••• •••• Reduced contact point for conveying smooth products. Allows drain of liquids.	-20 /+80 SIS 0.60 x 40 •••• •••• For oily conveyor conditions. Contact only on top of the Noppen.	
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED	4.3 +/- 0.5 -20 /+80 0.60 x 30 •••• ••• ••• Suitable for wet environments where friction and drainage are necessary.	2.7 +/- 0.5 -20 /+80 0.60 x 35 •••• •••• •••• Reduced contact point for conveying smooth products. Allows drain of liquids.	-20 /+80 SIS 0.60 x 40 •••• •••• For oily conveyor conditions. Contact only on top of the Noppen.	

ENGINEERED & SPECIALTY BELTS

RED GRIP ORANGE COVER Z-COVER PU 7 PU 9 PU 10 SOURCE LOCATION ITALY USA ITALY, USA COLOURS PU/SYNTHETIC RUBBER **RAW MATERIAL** PU PU HARDNESS (SHA) 63 +/-4 42 56 COVER AND BELT COHESION METHOD CO-EXTRUSION CO-EXTRUSION CO-EXTRUSION STANDARD COVER THICKNESS RANGE (mm) 1 to 8 3/6/9 3/6 **TOLERANCE COVER** +/- 0.3 +/- 0.3 +/- 0.3 THICKNESS (mm) **WORKING TEMPERATURE** -20 /+60 -25 /+65 -25 /+70 **COEFFICIENT OF** 0.70 0.80 0.60 FRICTION* (CoF) MIN. PULLEY DIAMETER x 30 x 20 x 25 WATER RESISTANCE **ABRASION RESISTANCE** OIL RESISTANCE** Cover offering high-grip, Seamless alternative to Natural Rubber. High-density, high CoF PU foam with FEATURES/BENEFITS good wear, and oil resistance. Available on MEGAFLEX only. Only available on MEGAFLEX. good resistance to oil, and abrasion. **FOOD CONTACT APPROVED** NO NO NO **FDA APPROVED EU REGULATIONS INDUSTRIES**

ENGINEERED & SPECIALTY BELTS

	CELLOFLEX	PU-YELLOW	PU - GREY/RED	
	=		=	
	PU 15	PU 14A	PU 14B	
	THE STATE OF THE S	ille	· FINA	
	The second second second			
	A Comment			
SOURCE LOCATION	ITALY, USA	ITALY	ITALY	
COLOURS				
RAW MATERIAL	MICRO-CELLULAR PU	TWO COMPONENT PU FOAM	TWO COMPONENT PU FOAM	
HARDNESS (ShA)	350 kg/m³	SOFT: 35-40, STD: 50, HARD: 60-70	SOFT: 35-40, STD: 50, HARD: 60-70	
COVER AND BELT COHESION METHOD	LAMINATION	SEAMLESS SPRAYING - LAMINATION	SEAMLESS SPRAYING	
STANDARD COVER THICKNESS RANGE (mm)	2 to 5	1 to 10	1 to 10	
TOLERANCE COVER			+/- 0.3	
THICKNESS (mm)	+/- 0.5	+/- 0.3	47-0.5	
WORKING TEMPERATURE (°C)	-30 /+80	-10 /+60	-10 /+60	
COEFFICIENT OF FRICTION* (CoF)	0.30	0.40	0.40	
MIN. PULLEY DIAMETER	x 20	x 25	x 25	
WATER RESISTANCE	•000	••00	••00	
ABRASION RESISTANCE	•••	••••	••••	
OIL RESISTANCE**	●000	•••	•••	
	l Kalaba flat Sala ann ad alamah alamah an	Vany good abragion registance and	Venu good obresion resistance and	
FEATURES/BENEFITS	Highly flexible, good shock absorption. Use to move sensitive and fragile products. Better resistance than sylomer	Very good abrasion resistance and and high-grip against paper. Good machineability for vacuum holes and	Very good abrasion resistance and and high-grip against paper. Good machineability for vacuum holes and	
	foams.	other modifications.	other modifications.	
FOOD CONTACT APPROVED	NO	NO	NO	
FDA APPROVED EU REGULATIONS				
LUTILGULATIONS				
INDUSTRIES				

SYLOMER YELLOW SYLOMER BLUE SYLOMER GREEN PU 68 PU 16 PU 17 SOURCE LOCATION ITALY, USA ITALY, USA ITALY, USA COLOURS **RAW MATERIAL** PU Foam PU Foam PU Foam HARDNESS (ShA) 220 kg/m³ 150 kg/m³ 300 kg/m³ COVER AND BELT COHESION METHOD LAMINATION LAMINATION LAMINATION STANDARD COVER THICKNESS RANGE (mm) 1 to 12 2 to 20 2 to 20 **TOLERANCE COVER** +/- 0.25 +/- 0.5 +/- 0.5 THICKNESS (mm) **WORKING TEMPERATURE** -30 /+70 -30 /+70 -30 /+70 **COEFFICIENT OF** 0.50 0.50 0.50 FRICTION* (CoF) Ø min. +TKx5(****) MIN. PULLEY DIAMETER x 15 x 15 WATER RESISTANCE •••0 ABRASION RESISTANCE •000 •000 •000 OIL RESISTANCE** •000 •000 •000 High-dynamic load capacity for 10 ShA offers high dynamic load capacity 15 ShA offers high dynamic load capacity FEATURES/BENEFITS movement of light and sensitive parts. for handling of lightweight, fragile items. for top pressure belts. **FOOD CONTACT APPROVED** NO NO FDA APPROVED **EU REGULATIONS INDUSTRIES**

ENGINEERED & SPECIALTY BELTS

	SYLOMER BROWN	APL RED	APL SUPERGRIP	
	6123M2H2H3MH	7.11 2 11 2 2	711 2 331 211 G1 III	
	-	<u></u>	∏	
		=	=	
	PU 18	PU 8	PU 12	
	A Committee of the Comm			
			Maria .	
	1737	11120	11117	
SOURCE LOCATION	ITALY, USA	ITALY	ITALY	
COLOURS				
RAW MATERIAL	PU Foam	PVC	PVC	
HARDNESS (ShA)	400 kg/m³	55	55	
COVER AND BELT COHESION METHOD	LAMINATION	CO-EXTRUSION	CO-EXTRUSION	
STANDARD COVER	1 to 12	3.5	5.2	
THICKNESS RANGE (mm) TOLERANCE COVER			5611	
THICKNESS (mm)	+/- 0.5	+/- 0.3	+/- 0.5	
WORKING TEMPERATURE				
(°C)	-30 /+70	-20 /+60	-20 /+60	
(°C)		POWER	ED BY SIS	
(°C) COEFFICIENT OF FRICTION* (CoF)	-30 /+70 0.50	-20 /+60 POWER		
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER		POWER	ED BY SIS	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE	0.50 × 20 • • • ○	0.70 × 30 • • • • •	x 30 • • • ○	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	0.50 x 20 ● ● ○ ○ ● ● ○ ○	POWER 0.70 × 30 • • • ○ • • • ○	× 30 • • • • •	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE	0.50 × 20 • • • ○	0.70 × 30 • • • • •	x 30 •••• •••• ••••	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	0.50 x 20 ● ● ○ ○ ● ● ○ ○	x 30 • • • • • • • •	x 30	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	0.50 x 20 ● ● ○ ○ ● ○ ○ ○ 22 ShA, offers high dynamic load	0.70 x 30 •••• ••• Seamless alternative to Natural Rubber. Blended elastomer offering high CoF,	0.60 x 30 •••• •••• Cover offering high friction rough top surface, applicable for slight height compensation, low shock absorption capabilities. Improved	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE**	0.50 x 20 ● ● ○ ○ ● ○ ○ ○	0.70 x 30 •••• ••• Seamless alternative to Natural Rubber.	0.60 x 30 x 30	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS	0.50 x 20 • • • ○ • • ○ ○ 22 ShA, offers high dynamic load capacity for moving glass.	0.70 x 30 •••• ••• ••• Seamless alternative to Natural Rubber. Blended elastomer offering high CoF, good oil resistance.	0.60 x 30 •••• •••• Cover offering high friction rough top surface, applicable for slight height compensation, low shock absorption capabilities. Improved adhesion even in case of moisture and dirt for use on lower angle incline product movement.	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED	0.50 x 20 ● ● ○ ○ ● ○ ○ ○ 22 ShA, offers high dynamic load	0.70 x 30 •••• ••• Seamless alternative to Natural Rubber. Blended elastomer offering high CoF,	0.60 x 30 x 30	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED	0.50 x 20 • • • ○ • • ○ ○ 22 ShA, offers high dynamic load capacity for moving glass.	0.70 x 30 •••• ••• ••• Seamless alternative to Natural Rubber. Blended elastomer offering high CoF, good oil resistance.	0.60 x 30 •••• •••• Cover offering high friction rough top surface, applicable for slight height compensation, low shock absorption capabilities. Improved adhesion even in case of moisture and dirt for use on lower angle incline product movement.	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED	0.50 x 20 • • • ○ • • ○ ○ 22 ShA, offers high dynamic load capacity for moving glass.	0.70 x 30 •••• ••• ••• Seamless alternative to Natural Rubber. Blended elastomer offering high CoF, good oil resistance.	0.60 x 30 •••• •••• Cover offering high friction rough top surface, applicable for slight height compensation, low shock absorption capabilities. Improved adhesion even in case of moisture and dirt for use on lower angle incline product movement.	
COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED	0.50 x 20 • • • ○ • • ○ ○ 22 ShA, offers high dynamic load capacity for moving glass.	0.70 x 30 •••• ••• ••• Seamless alternative to Natural Rubber. Blended elastomer offering high CoF, good oil resistance.	0.60 x 30 •••• •••• Cover offering high friction rough top surface, applicable for slight height compensation, low shock absorption capabilities. Improved adhesion even in case of moisture and dirt for use on lower angle incline product movement.	

COVERS: PVC

700000011100				
	PVC-FOIL BLUE	PVC-FOIL WHITE	SUPERGRIP PETROL	
	\Box	Π	∏	
	=	=	=	
	PVC 19	PVC 20	PVC 21	
	FIRE	AMA		
		A CO		
			1111	
		100		
		ITTE	11 Time	
	WHAT I	200		
SOURCE LOCATION	ITALY, USA	ITALY, USA	ITALY, USA	
COLOURS				
RAW MATERIAL	PVC	PVC	PVC	
HARDNESS (ShA)	40	65	46	
COVER AND BELT COHESION METHOD	LAMINATION	LAMINATION	CO-EXTRUSION - LAMINATION	
STANDARD COVER THICKNESS RANGE (mm)	2		4.5	
TOLERANCE COVER				
THICKNESS (mm)	+/- 0.5	+/- 0.5	+/- 0.5	
WORKING TEMPERATURE (°C)	-15 /+70	-20 /+100	-10 /+60	
COEFFICIENT OF		POWER	ED BY SIS	
FRICTION* (CoF)	0.90	0.80	0.90	
MIN. PULLEY DIAMETER	40 mm	60 mm	60 mm	
WATER RESISTANCE	•••	•••	•••	
ABRASION RESISTANCE	••00	•••	••00	
OIL RESISTANCE**	●●●○	•••	$\bullet \bullet \bullet \circ$	
	Good adhesion characteristics due to	Good adhesion characteristics due	Applicable for slight height	
FEATURES/BENEFITS	good CoF and smooth surface for the conveyance of paper and foils, wood	to good CoF and smooth surface. Resistant to acids and oils. Formulated	compensation, low shock absorption capabilities. Improved adhesion even	
1 2/11 011 20/ 22 11 21 11 0	and plastics. Seamless weldable on ML and MFX.	with ingredients considered FDA safe. Seamless weldable on ML and MFX.	with moisture and dirt for incline, feed and take-away conveying applications.	
	aiu ivii 7.	Jeanness Weidadie on IVIL and IVIFA.	Seamless weldable on ML and MFX.	
FOOD CONTACT APPROVED	NO	YES	NO	
FDA APPROVED		YES		
EU REGULATIONS		YES		

INDUSTRIES

ENGINEERED & SPECIALTY BELTS

COVERS: PVC

	SUPERGRIP WHITE	PVC-SAW-TOOTH	PVC-NAPPED
	SUPERGRIP WHITE	PVC-SAW-1001H	PVC-NAPPED
	=	=	=
	PVC 22	PVC 23	PVC 24
SOURCE LOCATION	ITALY, USA	ITALY, USA	ITALY, USA
COLOURS			
RAW MATERIAL	PVC	PVC	PVC
HARDNESS (ShA)	60	60 +/-4	65
COVER AND BELT			
COHESION METHOD	LAMINATION	LAMINATION	LAMINATION
	LAMINATION 3.0	LAMINATION 2,5	LAMINATION
COHESION METHOD STANDARD COVER			
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER	3.0	2.5	1.5
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE	3.0	2.5	1.5
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF	3.0 +/- 0.5 -10 /+100 0.80 60 mm	2.5 +/- 0.5 -15 /+70 0.70 60 mm	1.5 +/- 0.5 -15 /+60 SIS 0.80 60 mm
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE	3.0 +/- 0.5 -10 /+100 0.80 60 mm	2.5 +/- 0.5 -15 /+70 0.70 60 mm	1.5 +/- 0.5 -15 /+60 SIS 0.80 60 mm
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	3.0 +/- 0.5 -10 /+100 0.80 60 mm •••••••••••••••••••••••••••••••••••	2.5 +/- 0.5 -15 /+70 0.70 60 mm •••••••••••••••••••••••••••••••••••	1.5 +/- 0.5 -15 /+60 SIS 0.80 60 mm •••••
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE	3.0 +/- 0.5 -10 /+100 0.80 60 mm	2.5 +/- 0.5 -15 /+70 0.70 60 mm	1.5 +/- 0.5 -15 /+60 SIS 0.80 60 mm
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	3.0 +/- 0.5 -10 /+100 0.80 60 mm •••••••••••••••••••••••••••••••••••	2.5 +/- 0.5 -15 /+70 0.70 60 mm •••••••••••••••••••••••••••••••••••	1.5 +/- 0.5 -15 /+60 SIS 0.80 60 mm •••••
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE**	3.0 +/- 0.5 -10 /+100 0.80 60 mm •••• ••• Characteristics same as Supergrip petrol but less flexible. For the conveyance of	2.5 +/- 0.5 -15 /+70 0.70 60 mm ••••• •••• FDA clear pattern for improved adhesion under wet conditions. Line contact,	1.5 +/- 0.5 -15 /+60 -16 /-60 -17 /-60 -18
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS	3.0 +/- 0.5 -10 /+100 0.80 60 mm ••••• •••• Characteristics same as Supergrip petrol but less flexible. For the conveyance of food. Resistant against acids and bases.	2.5 +/- 0.5 -15 /+70 0.70 60 mm ••••• ••••• FDA clear pattern for improved adhesion under wet conditions. Line contact, resistant against acids and bases.	1.5 +/- 0.5 -15 /+60 -16 /-60 -17 /-60 -18
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS	3.0 +/- 0.5 -10 /+100 0.80 60 mm •••• ••• Characteristics same as Supergrip petrol but less flexible. For the conveyance of food. Resistant against acids and bases.	2.5 +/- 0.5 -15 /+70 0.70 60 mm •••• •••• FDA clear pattern for improved adhesion under wet conditions. Line contact, resistant against acids and bases. YES	1.5 +/- 0.5 -15 /+60 BB 0.80 60 mm •••• ••• Thin cover offers good CoF, even in wet conditions. Resistant to acids and oils. Formulated with FDA materials. YES
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED	3.0 +/- 0.5 -10 /+100 0.80 60 mm •••• ••• Characteristics same as Supergrip petrol but less flexible. For the conveyance of food. Resistant against acids and bases. YES YES	2.5 +/- 0.5 -15 /+70 0.70 60 mm •••• ••• FDA clear pattern for improved adhesion under wet conditions. Line contact, resistant against acids and bases. YES YES	1.5 +/- 0.5 -15 /+60 BBY 0.80 60 mm •••• •••• Thin cover offers good CoF, even in wet conditions. Resistant to acids and oils. Formulated with FDA materials. YES YES

COVERS: PVC

- January 1			
	PVC FISHBONE	MINIGRIP GREEN	STAGGERED SAWTOOTH
	:	\Box	<u> </u>
	=	=	=
	PVC 25	PVC 26	PVC 81
	1/		
	111111	Maria	11118
SOURCE LOCATION	ITALY	ITALY, USA	ITALY, USA
COLOURS			
RAW MATERIAL	PVC	PVC	PVC
HARDNESS (ShA)	65	60	46
COVER AND BELT	LAMINATION	CO-EXTRUSION - LAMINATION	LAMINATION
COHESION METHOD STANDARD COVER			
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm)	LAMINATION 3	CO-EXTRUSION - LAMINATION	LAMINATION 8
COHESION METHOD STANDARD COVER			
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE	3	1,3	8
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF	-15 /+90	1.3 +/- 0.5 -10 /+70	+/- 0.5 -20 /+70 SIS
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C)	3 +/- 0.5	1.3	8 +/- 0.5
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER	3 +/- 0.5 -15 /+90 0.60 x 30	1.3 +/- 0.5 -10 /+70 0.70 30 mm	-20 /+70 SIS 0.90 60 mm
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE	3 +/- 0.5 -15 /+90 0.60 x 30 ••• ○	1.3 +/- 0.5 -10 /+70 0.70 30 mm •••• •	8 +/- 0.5 -20 /+70 SIS 0.90 60 mm
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	3 +/- 0.5 -15 /+90 0.60 x 30 • • • ○	1.3 +/- 0.5 -10 /+70 0.70 30 mm •••••••••••••••••••••••••••••••••••	8 +/- 0.5 -20 /+70 SIS 0.90 60 mm •••••
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE	3 +/- 0.5 -15 /+90 0.60 x 30 ••• ○	1.3 +/- 0.5 -10 /+70 0.70 30 mm •••• •	8 +/- 0.5 -20 /+70 0.90 60 mm ••••
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	3 +/- 0.5 -15 /+90 0.60 x 30 ••• • • • •	1.3 +/- 0.5 -10 /+70 0.70 30 mm ••• • • • • • • • • • • • •	60 mm •••• •••• ••••
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE**	3 +/- 0.5 -15 /+90 0.60 x 30 • • • ○ • • • ○ Improved CoF in wet conditions. Narrow belts may only have a single diagonal-	1.3 +/- 0.5 -10 /+70 0.70 30 mm •••• •••• Thin cover structure with very good friction in wet or dusty conditions -	8 +/- 0.5 -20 /+70 0.90 60 mm • • • ○ • • • ○ Very good CoF for gripping
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	3 4/- 0.5 -15 /+90 0.60 x 30 •••• •••• Improved CoF in wet conditions. Narrow	1.3 +/- 0.5 -10 /+70 0.70 30 mm ••• ○ ••• ○	60 mm •••• •••• ••••
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE**	3 +/- 0.5 -15 /+90 0.60 x 30 ••••○ ••••○ Improved CoF in wet conditions. Narrow belts may only have a single diagonal-cut profile. Resistant to acids and oils.	1.3 +/- 0.5 -10 /+70 0.70 30 mm ••••• ••••• Thin cover structure with very good friction in wet or dusty conditions - reduces frictional stick. Resistant to acids	8 +/- 0.5 -20 /+70 0.90 60 mm ••••○ •••○ Very good CoF for gripping and incline conveying.
STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS	-15 /+90 0.60 x 30	1.3 +/- 0.5 -10 /+70 0.70 30 mm ••••• ••••• Thin cover structure with very good friction in wet or dusty conditions - reduces frictional stick. Resistant to acids and oils.	-20 /+70 SIS 0.90 60 mm ••••••• Very good CoF for gripping and incline conveying. Resistant to acids and oils.
STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (COF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS	3 +/- 0.5 -15 /+90 0.60 x 30 ••••○ ••••○ lmproved CoF in wet conditions. Narrow belts may only have a single diagonal-cut profile. Resistant to acids and oils. Formulated with FDA materials.	1.3 +/- 0.5 -10 /+70 0.70 30 mm ••••• ••••• Thin cover structure with very good friction in wet or dusty conditions - reduces frictional stick. Resistant to acids and oils.	-20 /+70 SIS 0.90 60 mm ••••••• Very good CoF for gripping and incline conveying. Resistant to acids and oils.
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED	3 +/- 0.5 -15 /+90 0.60 x 30 •••• ○ •••• ○ Improved CoF in wet conditions. Narrow belts may only have a single diagonal-cut profile. Resistant to acids and oils. Formulated with FDA materials. YES YES	1.3 +/- 0.5 -10 /+70 0.70 30 mm ••••• ••••• Thin cover structure with very good friction in wet or dusty conditions - reduces frictional stick. Resistant to acids and oils.	-20 /+70 SIS 0.90 60 mm ••••••• Very good CoF for gripping and incline conveying. Resistant to acids and oils.
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (COF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED EU REGULATIONS	3 +/- 0.5 -15 /+90 0.60 x 30 •••• Improved CoF in wet conditions. Narrow belts may only have a single diagonal-cut profile. Resistant to acids and oils. Formulated with FDA materials. YES YES YES	1.3 +/- 0.5 -10 /+70 0.70 30 mm •••• ••• ••• Thin cover structure with very good friction in wet or dusty conditions - reduces frictional stick. Resistant to acids and oils.	-20 /+70 SIS 0.90 60 mm •••• ••• Very good CoF for gripping and incline conveying. Resistant to acids and oils.
COHESION METHOD STANDARD COVER THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED	3 +/- 0.5 -15 /+90 0.60 x 30 •••• ○ •••• ○ Improved CoF in wet conditions. Narrow belts may only have a single diagonal-cut profile. Resistant to acids and oils. Formulated with FDA materials. YES YES	1.3 +/- 0.5 -10 /+70 0.70 30 mm ••••• ••••• Thin cover structure with very good friction in wet or dusty conditions - reduces frictional stick. Resistant to acids and oils.	-20 /+70 SIS 0.90 60 mm ••••••• Very good CoF for gripping and incline conveying. Resistant to acids and oils.

ENGINEERED & SPECIALTY BELTS

	LINATEX™ RED	LINARD	LINAPLUS FG
	=	=	
	RU 27	RU 28	RU 29
	110 27	110 20	110 23
	THE STATE OF THE S		- Miles
			MAN TO THE REAL PROPERTY OF THE PARTY OF THE
			111770
SOURCE LOCATION	ITALY, USA USA	ITALY, USA	ITALY, USA
COLOURS	The cont	III LI, OOK	Thirties, cont
RAW MATERIAL	NATURAL RUBBER	NATURAL RUBBER	NATURAL RUBBER
HARDNESS (ShA)	38 40	60	38
COVER AND BELT COHESION METHOD	LAMINATION VULCANIZATION	LAMINATION	LAMINATION
STANDARD COVER			
THOCKNESS DANIOS (***)	1 to 10 3 to 12. 7	1 to 6	1 to 3
THICKNESS RANGE (mm)	1 to 10 3 to 12, 7	1 to 6	1 to 3
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm)	1 to 10 3 to 12, 7	1 to 6 +/- 1(***)	1 to 3 +/- 1(***)
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE			15/2/1/
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C)	+/-1(***) -40 /+70	+/- 1(***) -30 /+70	+/- 1(***) -40 /+70 SIS
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE	+/-1(***)	+/- 1(***)	+/- 1(***)
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER	+/-1(***) -40 /+70 0.90 x 20	+/- 1(***) -30 /+70 0.60 x 30	+/- 1(***) -40 /+70 SIS 0.75 x 25
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE	+/-1(***) -40 /+70 0.90 x 20 • • • ○	+/- 1(***) -30 /+70 0.60 x 30 • • • ○	+/- 1(***) -40 /+70 SIS 0.75 x 25 ••••
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	+/-1(***) -40 /+70 0.90 x 20 •••• ••• ••• ••• •••	+/- 1(***) -30 /+70 0.60 x 30 ••• • •	+/- 1(***) -40 /+70 SIS 0.75 x 25 •••• ••• ••• •••
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE	+/-1(***) -40 /+70 0.90 x 20 • • • ○	+/- 1(***) -30 /+70 0.60 x 30 • • • ○	+/- 1(***) -40 /+70 SIS 0.75 x 25 ••••
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	+/-1(***) -40 /+70 0.90 x 20 ••••○ •••○ Cover offers high CoF, good	+/- 1(***) -30 /+70 0.60 x 30 ••• ○ ••• ○	+/- 1(***) -40 /+70 SIS 0.75 x 25 •••• •••• •••• ••••
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE	+/-1(***) -40 /+70 0.90 x 20 •••• ••• Cover offers high CoF, good wear resistance, good in wet conditions but poor in oil. Common used as	+/- 1(***) -30 /+70 0.60 x 30 •••• ••• Cover with high abrasion resistance but less adhesion in comparison to	-40 /+70 SIS 0.75 x 25 ••••• ••••• ••••• High CoF white non-marking natural rubber material.
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE**	+/-1(***) -40 /+70 0.90 x 20 ••••○ •••○ Cover offers high CoF, good wear resistance, good in wet conditions	+/- 1(***) -30 /+70 0.60 x 30 •••• ••• Cover with high abrasion resistance	+/- 1(***) -40 /+70 BBY 0.75 x 25 •••• •••• •••• High CoF white non-marking natural
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS	+/-1(***) -40 /+70 0.90 x 20 ••••○ •••○ Cover offers high CoF, good wear resistance, good in wet conditions but poor in oil. Common used as discharge belts for use in vacuum VFFS.	+/- 1(***) -30 /+70 0.60 x 30 •••○ •••○ Cover with high abrasion resistance but less adhesion in comparison to LINATEX™ (RU 27).	-40 /+70 SIS 0.75 x 25 ••••• ••••• ••••• High CoF white non-marking natural rubber material.
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE**	+/-1(***) -40 /+70 0.90 x 20 •••• ••• Cover offers high CoF, good wear resistance, good in wet conditions but poor in oil. Common used as	+/- 1(***) -30 /+70 0.60 x 30 •••• ••• Cover with high abrasion resistance but less adhesion in comparison to	-40 /+70 SIS 0.75 x 25 •••••• •••••• High CoF white non-marking natural rubber material. Formulated with FDA materials.
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED	+/-1(***) -40 /+70 0.90 x 20 ••••○ •••○ Cover offers high CoF, good wear resistance, good in wet conditions but poor in oil. Common used as discharge belts for use in vacuum VFFS.	+/- 1(***) -30 /+70 0.60 x 30 •••○ •••○ Cover with high abrasion resistance but less adhesion in comparison to LINATEX™ (RU 27).	+/- 1(***) -40 /+70 SIS 0.75 x 25 •••• ••• ••• ••• ••• ••• •••
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED	+/-1(***) -40 /+70 0.90 x 20 ••••○ •••○ Cover offers high CoF, good wear resistance, good in wet conditions but poor in oil. Common used as discharge belts for use in vacuum VFFS.	+/- 1(***) -30 /+70 0.60 x 30 •••○ •••○ Cover with high abrasion resistance but less adhesion in comparison to LINATEX™ (RU 27).	+/- 1(***) -40 /+70 SIS 0.75 x 25 ••••• ••••• High CoF white non-marking natural rubber material. Formulated with FDA materials. YES YES
THICKNESS RANGE (mm) TOLERANCE COVER THICKNESS (mm) WORKING TEMPERATURE (°C) COEFFICIENT OF FRICTION* (CoF) MIN. PULLEY DIAMETER WATER RESISTANCE ABRASION RESISTANCE OIL RESISTANCE** FEATURES/BENEFITS FOOD CONTACT APPROVED FDA APPROVED	+/-1(***) -40 /+70 0.90 x 20 ••••○ •••○ Cover offers high CoF, good wear resistance, good in wet conditions but poor in oil. Common used as discharge belts for use in vacuum VFFS.	+/- 1(***) -30 /+70 0.60 x 30 •••○ •••○ Cover with high abrasion resistance but less adhesion in comparison to LINATEX™ (RU 27).	+/- 1(***) -40 /+70 SIS 0.75 x 25 ••••• ••••• High CoF white non-marking natural rubber material. Formulated with FDA materials. YES YES

LINATRILE **RP 400 YELLOW CORREX BEIGE RU 30** RU 31 RU 32 SOURCE LOCATION ITALY, USA ITALY ITALY COLOURS **RAW MATERIAL** POLYMER NBR CAOUTCHOUC (Natural Rubber) NATURAL RUBBER HARDNESS (ShA) 38 36 55 COVER AND BELT COHESION METHOD LAMINATION LAMINATION LAMINATION STANDARD COVER THICKNESS RANGE (mm) 2 to 6 1 to 10 2 to 6 **TOLERANCE COVER** +/- 1(***) +/- 0.5 +/- 0.5 THICKNESS (mm) **WORKING TEMPERATURE** -10 /+80 -10 /+70 -20 /+110 **COEFFICIENT OF** 0.70 0.80 0.70 FRICTION* (CoF) MIN. PULLEY DIAMETER x 25 x 20 x 20 WATER RESISTANCE ••00 ABRASION RESISTANCE OIL RESISTANCE** •000 •000 $\bullet \bullet \circ$ Improved temperature, oil, grease and aging resistance compared to natural Cover has fine fabric texture, Cover offers high CoF and high wear FEATURES/BENEFITS characteristics similar to Natural Rubber rubber. Good mechanical processing resistant features. Black contact layer. but higher abrasion resistance. capability vacuum transport of oilcovered sheets. **FOOD CONTACT APPROVED** NO NO **FDA APPROVED EU REGULATIONS**

INDUSTRIES

ENGINEERED & SPECIALTY BELTS

CORREX BLACK GUMMY CORREX AMBRA TAN NATURAL RUBBER 40 PARABLOND RU 33 RU 73 RU 44 SOURCE LOCATION ITALY ITALY USA COLOURS **RAW MATERIAL** NATURAL RUBBER NATURAL RUBBER NATURAL RUBBER HARDNESS (ShA) 48 40 60 COVER AND BELT COHESION METHOD LAMINATION **VULCANIZATION VULCANIZATION** STANDARD COVER THICKNESS RANGE (mm) 2 to 6 0.8 to 15 2.4 to 14 **TOLERANCE COVER** +/- 0.5 +/- 0.3 +/- 0.3 THICKNESS (mm) **WORKING TEMPERATURE** -10 /+70 -20 /+60 -20 /+80 **COEFFICIENT OF** 0.60 0.60 0.60 FRICTION* (CoF) MIN. PULLEY DIAMETER x 30 x 30 x 20 WATER RESISTANCE ••00 **ABRASION RESISTANCE** $\bullet \bullet \bullet \circ$ OIL RESISTANCE** •000 •000 •000 Cover offers good abrasion Cover offers high CoF and higher Cover offers non marking high CoF FEATURES/BENEFITS resistance and lower friction than abrasion resistance than other Natural surface. Average wear and tear and Correx Beige (RU 32). Rubber compounds. abrasion resistance. **FOOD CONTACT APPROVED** NO NO NO **FDA APPROVED EU REGULATIONS INDUSTRIES**

ENGINEERED & SPECIALTY BELTS

RED NATURAL RUBBER 60

BLUE NATURAL RUBBER 55

TENAX 40

INDUSTRIES

TENAX STANDARD HONEYCOMB BLUE GRIP RU 75 RU 78 RU 39 SOURCE LOCATION ITALY ITALY, USA SPAIN COLOURS **RAW MATERIAL** NATURAL RUBBER NATURAL RUBBER NR / BR HARDNESS (ShA) 50 57 45 COVER AND BELT COHESION METHOD **VULCANIZATION LAMINATION** ONE SHOT CURING STANDARD COVER THICKNESS RANGE (mm) 0.8 to 15 4.5 to 15 <=12.5 (*) **TOLERANCE COVER** +/- 0.3 +/- 0.5 +/- 0.3 THICKNESS (mm) **WORKING TEMPERATURE** -20 /+60 -20 /+60 -20 /+80 **COEFFICIENT OF** 0.70 0.60 0.80 FRICTION* (CoF) MIN. PULLEY DIAMETER x 30 x 30 Ø min. +TKx5(****) WATER RESISTANCE ••00 ABRASION RESISTANCE OIL RESISTANCE** •000 •000 •00 Cover offering high-friction rough top surface, applicable for slight height compensation, low shock absorption Very good wear resistance. Alternative to Cover is slightly harder than Tenax 40, **FEATURES/BENEFITS** Natural Rubber. Only available on rubber but offers very good abrasion resistance. capabilities. Improved adhesion even with base belts. moisture and dirt for use on lower angle incline product movement. **FOOD CONTACT APPROVED** NO NO **FDA APPROVED EU REGULATIONS INDUSTRIES**

ENGINEERED & SPECIALTY BELTS

LOW DURO NR R34 YELLOW GUM R14 LOW DURO BLACK NEOPRENE R35 RU 83 RU 41 RU 63 SOURCE LOCATION **SPAIN** SPAIN SPAIN COLOURS **RAW MATERIAL** NATURAL RUBBER NATURAL RUBBER NATURAL RUBBER HARDNESS (ShA) 35-45 35-45 40-50 COVER AND BELT COHESION METHOD TWO SHOT CURING ONE SHOT CURING ONE SHOT CURING STANDARD COVER THICKNESS RANGE (mm) 1.0 to 13 1.6 to 12 1.0 to 13 **TOLERANCE COVER** +/- 0.3 +/- 0.3 +/- 0.3 THICKNESS (mm) **WORKING TEMPERATURE** -25 /+80 -25 /+80 -20 /+85 **COEFFICIENT OF** 0.70 0.80 0.55 FRICTION* (CoF) MIN. PULLEY DIAMETER Ø min. +TKx5(****) Ø min. +TKx5(****) Ø min. +TKx5(****) WATER RESISTANCE **ABRASION RESISTANCE** ••00 OIL RESISTANCE** •000 •000 Non marking compound for applications Cover offers high CoF, very good wear requiring, high coefficient of friction. Excellent resistance. Compound common used Cover offering high-friction, FEATURES/BENEFITS abrasion resistance. Very good tear in indexing, corrugating, positioning and non-marking feature. Only available on rubber base belts. resistance. Low hysteresis. Only available packaging applications. Only available on on rubber base belts. rubber base belts. NO **FOOD CONTACT APPROVED** NO NO **FDA APPROVED EU REGULATIONS**

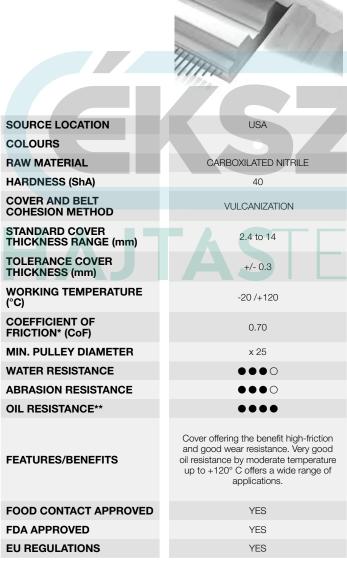
INDUSTRIES

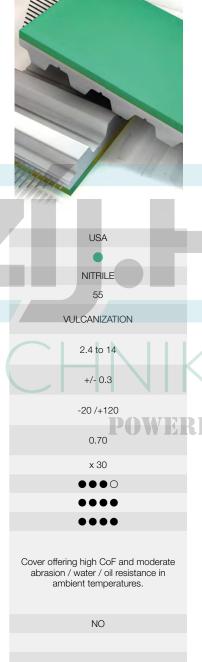
	ORANGE NATURAL RUBBER R66	POROL BLACK	NBR	
	=	=		=
	RU 81	RU 37		RU 34 RU 34 US
SOURCE LOCATION	SPAIN	ITALY, USA	ITALY, USA	USA
COLOURS RAW MATERIAL	NATURAL RUBBER	NATURAL CELLULAR RUBBER FOAM	NITRII E CAOLITO	CHOLIC
HARDNESS (ShA)	NATURAL RUBBER 42-48	290 kg/m ³	NITRILE CAOUTCHOUC 50 65 70	
COVER AND BELT				
COHESION METHOD	TWO SHOT CURING	LAMINATION	LAMINATION VUL	CANIZATION
STANDARD COVER THICKNESS RANGE (mm)	1.0 to 13	2 to 20	2 to 6	0.8 to 15
TOLERANCE COVER THICKNESS (mm)	+/- 0.3	+/- 0.5	+/- 0.5	+/- 0.3
WORKING TEMPERATURE (°C)	-30 /+80	-40 /+70	-35 /+70	0 /+120
COEFFICIENT OF FRICTION* (CoF)	0.72	1.2	0.70	0.60
MIN. PULLEY DIAMETER	Ø min. +TKx5(****)	x 15	x 30	x 35
WATER RESISTANCE	•••	••••		
ABRASION RESISTANCE	•••	••00	•000	
OIL RESISTANCE**	●000	••00	•••	
FEATURES/BENEFITS	Cover is an alternative to DURATAQ TM offering a custom blended proprietary rubber which has a high CoF, and very good abrasion resistance. Only available on rubber base belts.	Cover is closed cell, soft elastic cellular rubber with good wear resistance. On request with Nylon cover for bottle descrambling.	Cover offers improved or resistance compared to	oil and grease natural rubber.
FOOD CONTACT APPROVED	NO	NO	NO	
FDA APPROVED				
EU REGULATIONS				
		N II		

ENGINEERED & SPECIALTY BELTS

Please contact Megadyne or your local partner distributor to obtain more information about our materials, processes, minimum quantities and delivery times.

INDUSTRIES


COVERS: NITRILE-NEOPRENE


RU 52

WHITE NITRILE

RU 49

GREEN NITRILE 55

INDUSTRIES

COVERS: NITRILE-NEOPRENE

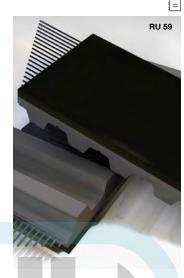
RU 53

BLACK NEOPRENE

RU 50

TAN NEOPRENE 55

COVERS: POLYCHLOROPRENE


BLUE FDA NEOPRENE 65

YELLOW NEOPRENE R15

HIGH DURO NEOPRENE R18

SOURCE LOCATION COLOURS

RAW MATERIAL

HARDNESS (ShA)

COVER AND BELT COHESION METHOD

STANDARD COVER THICKNESS RANGE (mm)

TOLERANCE COVER THICKNESS (mm)

WORKING TEMPERATURE

COEFFICIENT OF FRICTION* (CoF)

MIN. PULLEY DIAMETER

WATER RESISTANCE

ABRASION RESISTANCE

OIL RESISTANCE**

FEATURES/BENEFITS

FOOD CONTACT APPROVED FDA APPROVED

EU REGULATIONS

SPAIN

POLYCHLOROPRENE

63-73

ONE SHOT CURING

1.6 to 12

+/- 0.3

-35 /+105

0.80

Ø min. +TKx5(****)

Cover offers good resistance to weather and ozone environments. Self extinguishing. Good resistance to acid solutions. Formulated with FDA materials. Only available on rubber base belts.

YES

YES

SPAIN

POLYCHLOROPRENE

35-45

ONE SHOT CURING

1.0 to 13

+/- 0.3

-25 /+80

0.65

Ø min. +TKx5(****)

Cover offers a Neoprene alternative for applications requiring better resistance to heat, oils, greases, solvents. Only available on rubber base belts.

NO

SPAIN

POLYCHLOROPRENE

70-80

ONE SHOT CURING

1.0 to 13

+/- 0.3

-20 /+80

Ø min. +TKx5(****)

Cover offering a high ShA, black nonmarking neoprene compound. Only available on rubber base belts.

NO

INDUSTRIES

COVERS: POLYCHLOROPRENE

ENGINEERED & SPECIALTY BELTS



COVERS: POLYCHLOROPRENE

STATIC DISSIPATING **NEOPRENE ISEPO**

LOW DURO WHITE NEOPRENE R92

SOURCE LOCATION

COLOURS

RAW MATERIAL

HARDNESS (ShA)

COVER AND BELT COHESION METHOD

STANDARD COVER THICKNESS RANGE (mm)

TOLERANCE COVER THICKNESS (mm)

WORKING TEMPERATURE

COEFFICIENT OF FRICTION* (CoF)

MIN. PULLEY DIAMETER

WATER RESISTANCE

ABRASION RESISTANCE

OIL RESISTANCE**

FEATURES/BENEFITS

FOOD CONTACT APPROVED FDA APPROVED

EU REGULATIONS

SPAIN

POLYCHLOROPRENE

67-77

ONE SHOT CURING

1.0 to 13

+/- 0.3

-20 /+80

0.60

Ø min. +TKx5(****)

Cover used on belts requiring high conductivity. Compound exceed the ISO/ RMA classification for antistatic, static dissipating belts. Only available on rubber base belts.

NO

SPAIN

POLYCHLOROPRENE

35-45

ONE SHOT CURING

1.0 to 10

+/- 0.3

-20 /+90

0.65

Ø min. +TKx5(****)

Cover offers low ShA non-marking compound, offers high CoF and good wear resistance. Formulated with FDA materials. Only available on rubber base belts.

YES

YES

INDUSTRIES

COVERS: EPDM-VITON-HNBR

HTX (SILBLUE) **EPDM** VITON™ (KFM) **RU** 35 RU 36 RU 40 SOURCE LOCATION ITALY ITALY SPAIN COLOURS ETHYLENE-PROPYLENE-**RAW MATERIAL FLUOROPOLYMER** SILICONE **DIENE-MONOMER** HARDNESS (ShA) 75 64 COVER AND BELT COHESION METHOD LAMINATION LAMINATION ONE SHOT CURING STANDARD COVER THICKNESS RANGE (mm) 2 to 5 2 to 4 < = 12(*)TOLERANCE COVER +/- 0.5 +/- 0.5 +/- 0.3 THICKNESS (mm) **WORKING TEMPERATURE** -20 /+120 -10/+250 0 /+175 (°C) **COEFFICIENT OF** 0.70 1.60 1.10 FRICTION* (CoF) MIN. PULLEY DIAMETER x 35 x 40 Ø min. +TKx5(****) WATER RESISTANCE **ABRASION RESISTANCE** •000 •00 **OIL RESISTANCE**** •000 Cover offers extremely Cover offers high-temperature and UV high-temperature and oil resistance. Cover offers high-temperature range, resistance. Non-marking compound **FEATURES/BENEFITS** ATTENTION: For Lamination, attention common used in printing applications. good chemical and aging resistance. must be given to the lower temperature Only available on rubber base belts. resistance of base belt and adhesive used FOOD CONTACT APPROVED NO NO NO **FDA APPROVED EU REGULATIONS INDUSTRIES**

ENGINEERED & SPECIALTY BELTS

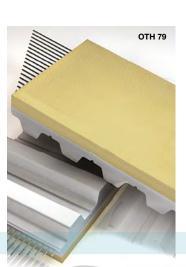
COVERS: EPDM-VITON-HNBR

70 DURO GREY HNBR - HTG LEV-HT-4 (LEVAPREN®) **SPONGE RUBBER ORANGE** RU 80 RU 82 RU 87 SOURCE LOCATION SPAIN SPAIN ITALY COLOURS **RAW MATERIAL** EVA NATURAL RUBBER **HNBR** HARDNESS (ShA) 66-76 69-77 250 kg/m³ COVER AND BELT COHESION METHOD ONE SHOT CURING ONE SHOT CURING LAMINATION STANDARD COVER THICKNESS RANGE (mm) 1/10 1.0 - 10.0 15 - 30 **TOLERANCE COVER** +/- 0.3 +/- 0.3 +/- 0.5 THICKNESS (mm) **WORKING TEMPERATURE** -30 /+150 -20 /+150 -40 /+60 **COEFFICIENT OF** 0.55 0.62 ON REQUEST FRICTION* (CoF) MIN. PULLEY DIAMETER Ø min. +TKx5(****) Ø min. +TKx5(****) ON REQUEST WATER RESISTANCE ••00 **ABRASION RESISTANCE** •000 OIL RESISTANCE** ••00 Cover offers higher temperature applications where UV resistance is Cover offers higher temperature Hi grip rubber sponge FEATURES/BENEFITS needed. Only available for 8M, H and applications than HNBR and even better for sensitive products. T10 belt profiles. Only available on rubber base belts. oil resistance. **FOOD CONTACT APPROVED** NO YES NO **FDA APPROVED EU REGULATIONS INDUSTRIES**

COVERS: OTHER

ENGINEERED &

Please contact Megadyne or your local partner distributor to obtain more information about our materials, processes, minimum quantities and delivery times.


SPECIALTY BELTS

COVERS: OTHER

KEVLAR® FELT

FAG 25 GREEN FELT

SOURCE LOCATION

COLOURS

RAW MATERIAL

HARDNESS (ShA)

COVER AND BELT COHESION METHOD

STANDARD COVER THICKNESS RANGE (mm)

TOLERANCE COVER THICKNESS (mm)

WORKING TEMPERATURE

COEFFICIENT OF FRICTION* (CoF)

MIN. PULLEY DIAMETER

WATER RESISTANCE

ABRASION RESISTANCE

OIL RESISTANCE**

FEATURES/BENEFITS

FOOD CONTACT APPROVED

FDA APPROVED EU REGULATIONS

INDUSTRIES

ITALY, USA

LAMINATION

6/8

+/- 1.0

-20 /+450

Values upon request

•000

 $\bullet \bullet \bullet \circ$

•000

Excellent heat-resistance for high temperature applications such as aluminum extrusion

NO

ITALY

POLYESTERFELT

70

LAMINATION

5

-20 /+120

VALUE ON REQUEST

120 MM

•000 ••••

••00

The felt provides a soft, non-marking, and good oil resistance surface for moving sharp, oily surface parts. Works well downline in complement to Kevlar® for higher temperature conveying.

NO

SILICONE COATED FABRIC WITH HOLES AND SLOTS

SILICONE COATED FOAM ON MEGAPOWER SUBSTRATE

SILICONE COATED TIMING BELT

MEGASILCOAT

SILICONE RANGE

Megadyne has developed state of the art processes for applying silicone to synchronous and non-synchronous belts and fabrics. Ongoing investments in automation with a strategic focus on process controls and high-quality repeatability have been made. Through continuous material feed, increased speeds, line efficiency, and operator engagement with screen panel controls, we are able to maintain extremely tight manufacturing tolerances and high-quality standards.

Coated belts are commonly used in product handling applications where environmental or special handling features are needed. Additionally, a thin coating on certain substrates allow for the finished product to offer good flexibility, enabling the belt to be used on low profile conveyors where designs such as knife-edge pulleys are common.

FDA Silicone allows the use of our product in applications such as hygienic goods and medical related parts and components. Silicone is an excellent cover material where the use of glues and adhesives are present in product manufacturing and require easy release and clean up. Silicone also has excellent heat-resistance, making it an ideal solution for applications in high heat environments.

Silicone cover can be applied on different substrates, as a rubber timing belts, moulded or open-ended polyurethane timing belts, truly endless flex TPU belts, rubber and polyurethane Multi-rib V-Belts, rubber banded V-Belts, rubber Flat Belts. Silicone coated products can be further customised with modifications such as holes and slots to meet application needs such as vacuum draw.

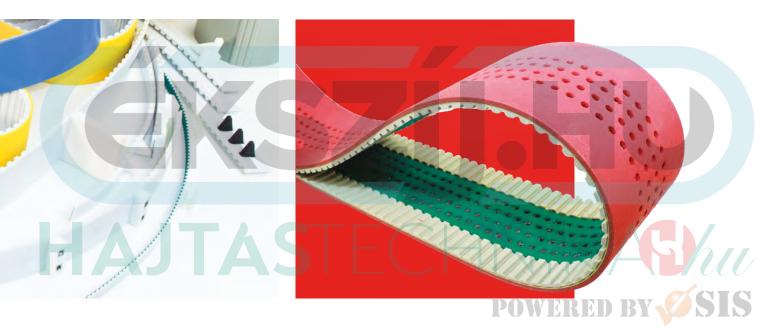
	MEGASILCOAT TRANSPARENT	MEGASILCOAT BLUE 24	MEGASILCOAT CRYSTAL 25	MEGASILCOAT RED HT 30	MEGASILCOAT 35	MEGASILCOAT WR 43
SOURCE LOCATION	ITALY	ITALY	ITALY	ITALY	ITALY - USA	ITALY
COLOUR			0			00/
RAW MATERIAL	SILICONE	SILICONE	SILICONE	SILICONE	SILICONE	SILICONE
HARDNESS (ShA)	20	24	25	30	35	43
COVER AND BELT COHESION METHOD	knife coating	knife coating	knife coating	knife coating	knife coating	knife coating
STANDARD COVER THICKNESS RANGE (mm)	1 to 10	1 to 10	1 to 10	1 to 10	1 to 10	1 to 10
TOLERANCE COVER THICKNESS (mm)	+/- 0.3	+/- 0.3	+/- 0.3	+/- 0.3	+/- 0.3	+/- 0.3
WORKING TEMPERATURE (°C)	-40 /+180	-40 /+180	-60 /+180	-60 /+180 up to +300 for short time period*	-60 /+180	-60 /+180
MIN. PULLEY DIAMETER	x 20	x 20	x 20	x 20	x 20	x 20
WATER RESISTANCE	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \bigcirc$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \bigcirc$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$
ABRASION RESISTANCE	●000	•000	•000	$\bullet \bullet \circ \circ$	•000	$\bullet \bullet \circ \circ$
OIL RESISTANCE**	••00	$\bullet \bullet \circ \circ$	$\bullet \bullet \circ \circ$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$	$\bullet \bullet \bullet \circ$
FEATURES/BENEFITS				excellent grip and eas erials like adhesives ea		
FC APPROVED	no	yes	yes	no	yes	yes
FDA APPROVED	no	yes	yes	no	yes	yes
EU REGULATIONS	no	no	no	no	no	no
INDUSTRIES						

ENGINEERED & SPECIALTY BELTS

PRODUCT EXAMPLE GALLERY

COVERS: BELT WORKSHEET

Choosing the right belt cover for a new application, requires a thorough understanding of the belt requirement and the environment in which the belt will operate. Reviewing the questions below will help guide you through the process.


If desired, please copy this page, scan and send to your sales contact.

Be	Belt Finish							
Width: Pitch: Lenght: Quantity:								
Bel	t Type							
	ML Joined Endless MFX Flex Type Others		PPJ - Pin Joint MP Molded Endless		ML Open-Ended			
Ap	plication							
ls t	he product to be mo	ved on	a horizontal, vertical or	r incli	ined plane?			
	Conveyor Vacuum Others		VFFS or FFS Polishing		Cable Puller			
Col	nveyor speed:	m/s		Ма	ax. acceleration/deceleration m/s ²			
Ma	terial to be conveyed							
We	ight of load on the be	elt:	kg					
Ma	terial of belt Guidance	e/frictio	n partner:					
Do:	es the belt run in one direction only		bi-directionally?					
	mber of Pulleys: terial of Pulleys:		Diameter of Pulle Omega drive: yes	-	Counter flexion Diameter:			
Wh	at best describes the	cover	need?		DAWEDED DV. SIG			
	High friction Compressibility		Low friction Others		Easy of release			
Does the cover require a specific thickness?								
Does the cover have a min/max thickness tolerance?								
	Does the belt have contact with water? If yes □ Bath □ Humidity							
cry	es the belt have cont stals? es please add kind o			s, UV	radiation or Abrasive materials like sand/dust/			

COVERS: BELT WORKSHEET

Working temperature □ -20 / +80 °C □ <-20°C please add°C □ >80°C please add°C In case only the conveyed material has a higher contact temperature°C	°C
Certificate needed? ☐ Antistatic ☐ FDA (FDA 21 CFR 177.2600, FDA21 CFR 177.105, FDA21 CFR 177.1680) ☐ European Directives 82/711/EEC,85/572/EEC,93/8/EEC e 97/48/EEC Regulation (EC) n° 1935/2004 (art.3,art.11,par.5,art.15,art.17) e 1895/2005 (where applicable) Regulation (EU) n° 10/2011 ☐ USDA (NSF/ANSI/3-A 14159-3-2010 Hygiene Requirements for the Design of Mechanical Belt Conveyors used in Meat and Poultry Processing)	
Modifications	
Modification Purpose	
□ Vacuum □ Drainage □ Sortation □ Tight Tolerance □ Others	
What modifications are required?	
☐ Grinding ☐ Routing/Profile Grinding ☐ Hole punching ☐ Grooving ☐ Others	
If grinding, requested finish and thickness	
If precision grinding, requested tolerances	
If routing, please sketch the desired design. Include dimensions:	
If hole punching, what is the hole diameter and hole pattern requested Please sketch. Indicate tolerances if required:	
Indicate tolerances in required.	TG
If grooving, indicate by sketch the design or pattern requested:	

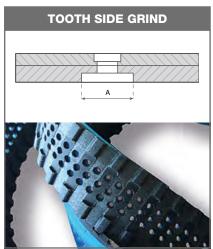
MODIFICATIONS

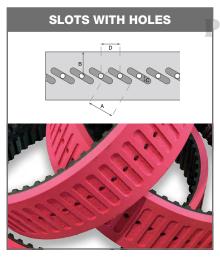
CUSTOM COVER MODIFICATIONS CLEATS MEGAC4T FALSE TEETH PROGRESSIVE PIN JOINT (PPJ)

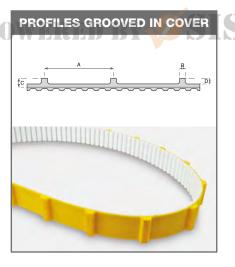
MODIFICATIONS

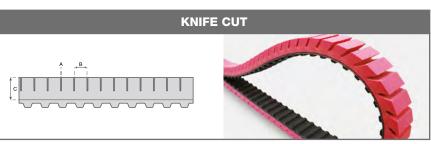
CUSTOM COVER MODIFICATIONS

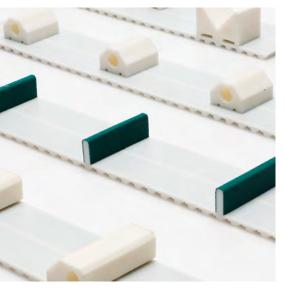
Process enhancements, skilled personnel and ongoing capital equipment investments enable Megadyne to stay at the forefront of new design developments and solution delivery to customers across the wide spectrum of industries we serve. Let a Megadyne Technical Sales Representative or Application Engineer create the right belt to deliver optimum performance for your application.


In addition to materials and process selection of the base belt, Megadyne can fully customise our belts with the following machined modifications:


- · Custom shapes
- Grinding
- Notching/Knife Cut
- Fabric added to the toothside of belt
- Vacuum Countersinks
- Holes/Perforations
- Pockets
- Slots
- Saw Tooth
- Grooves
- Water Cut







CONTACT MEGADYNE FOR OTHER CUSTOM OPTIONS AND **MODIFICATIONS TO FIT YOUR** PROCESS/APPLICATION.

LOOKING FOR CUSTOM CLEATS?

If you require a unique shape cleat for your specific product application, we can help.

Contact our team for more information.

ENGINEERED & SPECIALTY BELTS

CLEATS

FLIGHTS OR PROFILES

Cleats, also known as flights or profiles, are practical additions to urethane belts to assist in applications where product separation, sortation, actuation, or pushing. Cleated timing belts are commonly found in application areas where pick and place must be timed for production line accuracy.

MEGALINEAR and MEGAFLEX timing belts can be customised with profiles welded, casted out of a mould or even grinded from over-tickness on the backside of the belt.

All cleats, whether injection moulded or CNC machined are made with high-quality thermoplastic polyurethane.

Cleat Design is determined by the application requirements of the cleat and the size of the product required. Using our flexible production capabilities, Megadyne can design any cleat shape to meet the specific requirements of the customer:

- CNC machined from thermoplastic PU sheet or grinded out of over-tickness
- Injection moulded or casted which are manufactured in our own tool building facilities to guarantee fast service.

The cleats are attached by using high-frequency vibration, high-friction, hot blade, and infrared-welding or even chemical bonding. When made by grinding or casting, the cleats are homogenous.

CLEAT MATERIALS FOR THERMOPLASTIC BELTS

Our standard cleat is made with 92° ShA white polyurethane. This material is also used to produce MEGALINEAR and MEGAFLEX timing belt.

Cleats can also be supplied in different durometers and in alternative urethane colours. In applications where a hard and wear-resistant cleat is required, a harder durometer like 96 ShA can be provided. Additionally, Megadyne can mould glass fibre reinforced polyurethane.

In addition to our standard 92 ShA or harder 96 ShA urethane, Megadyne can provide EU Food compliant, FDA compliant blue, or transparent polyurethane for the food and pharmaceutical industry with a hardness of 85 ShA. Blue cleats made with the same FDA material as our blue belt are available to ensure materials compatibility for use in food applications.

Selection of the cleat material can be also dependent on the environment temperature (at low ambient temperatures low hardness is recommended). In general, individual cleat colours deviating from the standard can be produced according to indicated RAL number and under consideration of a minimum quantity.

Cleats can be covered by fabrics or made with dual material, like elastomers with metal inserts.

Cleats can be also reworked mechanically out of homogenous belt body. This is especially for high-quantity of cleats with a low pitch distance a very effective way to manufacture cleated belts. As this kind of process is made out of belts produced in over-thickness, the cleat height is limited and depends on the belt type and pitch.

FLIGHTS OR PROFILES

CLEAT MATERIALS FOR THERMOSET BELTS

For MEGAPOWER PU belts, cleats are cast in homogeneous fashion as the timing belt is moulded. For this, special tooling is needed. Quantity is a critical factor in determining if this process is right for you. The hardness of the base belt and the cleat is for this kind of manufacturing the same and depends on the selected Thermoset PU.

This kind of processing allows a more accurate tolerance of the cleat position and allows even blind holes in cross direction without an additional reworking.

DIMENSIONAL TOLERANCES

The dimensional accuracy of injection-moulded cleats depends on the shrinking behaviour of the selected polyurethane, the size and shape of the

- Injection-moulded cleats have a general tolerance of up to \pm 0.3 mm.
- Mechanically processed cleats have a general dimension tolerance of up to +/- 0.5 mm.
- Smaller tolerances can be achieved depending on the cleat material and must by requested case by case.

METHODS USED TO WELD CLEATS

HIGH-FREQUENCY, INFRARED & HOT BLADE

Depending on the shape and quantity of cleats to be welded, thermoplastic cleats can be welded using one of several options. When heating the cleat and base belt, polyurethane melts and creates a bead around the welding point. To avoid any negative impact of this bead on the transport side it will be cleaned accordingly to secure the precise positioning of the transport goods.

In some specific cases, a suitable tool is needed to fully remove the welding bead. The cleaning of welding beads on cleats with glassfibre reinforcement should be avoided in general. Additional to the bead the welded cleat loses height during the welding process. This height loss is called burn-off and is taken into consideration during cleat design and production.

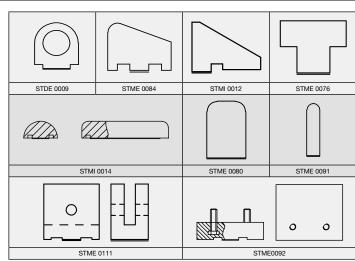
COLD WELDING (CHEMICAL BONDING)

During chemical bonding, the thermoplastic polyurethane cleat is permanently connected with the thermoplastic polyurethane base belt. Chemical bonding is preferably used for flat, round, and thin-walled cleats, as in contrary to the hot welding no material melts off, no welding beads and no burn-off occurs. Glass-fibre reinforced polyurethanes cannot be chemically bonded.

SPECIAL CLEAT DESIGNS

Megadyne can use components made from food-contact approved conveyor belts as cleats, applied with high-frequency technology to TPU timing belt. This hybrid construction is perfect for food applications, such as fruit conveying.

More information and profiles available online in our Technical Manuals:




CLEATS

BELT WORKSHEET

Base Belt Substrate: MEGALINEAR MEGAFLEX Other: Cleat colour: Cleat material: FDA: yes no Belt pitch: Belt length: Belt width: Belt cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Base Belt Substrate:	Application:	
Cleat colour: Cleat material: FDA: yes no Belt pitch: Belt length: Belt width: Belt cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Cleat colour: Cleat material: FDA: yes no Belt pitch: Belt length: Belt width: Belt cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	QUANTITY OF CLEATS AND BELTS NEEDED:	
Belt pitch: Belt length: Belt width: Bet cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Belt pitch: Belt length: Belt width: Belt cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Base Belt Substrate: 🛘 MEGALINEAR 🔻 🗖 MEGAF	FLEX Other:
Belt pitch: Belt length: Belt width: Belt cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Belt pitch: Belt length: Belt width: Belt cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Cleat colour: Cleat materi	ial:
Belt cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Belt cord: Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	FDA: 🗆 yes 🗆 no	
Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Pulley diameter(s) or # of teeth and pitch: Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Belt pitch: Belt length:	Belt width:
Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Cleats spacing: Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Belt cord:	
Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Desired cleat dimensions: IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Pulley diameter(s) or # of teeth and pitch:	
IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	IF THE CLEATS ARE IN GROUP, PLEASE SPECIFY: Quantity of cleats per group: Spacing of cleats inside the group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:		
Quantity of cleats per group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Quantity of cleats per group: Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Desired cleat dimensions:	
Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	Spacing of the groups: Sketch cleat(s) design with all relevant dimensions:	IF THE CLEATS ARE IN GROUP, PLEASE SPEC	IFY:
Sketch cleat(s) design with all relevant dimensions:	Sketch cleat(s) design with all relevant dimensions:	Quantity of cleats per group:	Spacing of cleats inside the group:
Sketch cleat(s) design with all relevant dimensions:	Sketch cleat(s) design with all relevant dimensions:	Spacing of the groups:	
			POWERED BY SI

Some cleats Examples:

A SPECIAL SOLUTION IS **BECOMING STANDARD!!!**

The fastening system of the exchangeable profile in the tooth of the belt allows a quick assembly and makes the belt extremely versatile - the same belt can be equipped with different profiles for individually transported goods without de-installation. The highly variable profile pitch will standardise any application.

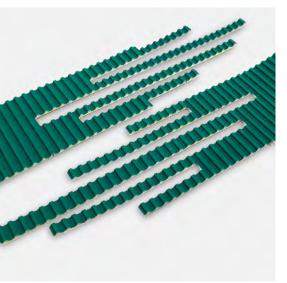
MEGAC4T & FALSE TEETH

Our False Tooth product is designed to provide an easy mechanical attachment option for placement of cleats and other profiles and shapes to H, AT10, and AT20 pitches. False Teeth can be added to MEGALINEAR open-ended, MEGAFLEX truly endless thermoplastic, and MEGAPOWER urethane timing belts.

False Teeth with mechanical attachments can be used to offer flexibility of adjustment and positioning in applications where sortation, actuation and product separation are needed such as in pick and place systems, inserting and cartoning machines found in the packaging industry. Megadyne's False Tooth attachments provide a method to reposition or replace broken cleats without the need to replace belts, thus saving time and money.

Additionally, False Teeth used to mount mechanical attachments can be a solution in applications where the forces placed against conventional weld-on cleats are too high and not robust enough to withstand the loads placed on them, which can lead to pull-off failure.

Megadyne standard False Tooth's material is AISI 304 stainless-steel. Contact Megadyne to discuss other material options.


ADVANTAGES OF MEGADYNE FALSE TEETH:

- Easy installation and removal of cleats
- Precise profile positioning
- Cost reduction in assembly and maintenance:
 - No removal of belt needed to replace cleats
- Different cleat materials can be used
- Stainless-steel false teeth suitable for food & pharmaceutical industry
- Available with NFT/NFB, FDA Urethane and with steel aramid or stainless-steel cords. Self-tracking belts can also be provided.

AVAILABLE ON FOLLOWING BELTS:

PITCH AND WIDTH	HOLE SPACING (mm)	# OF HOLES	DIAMETER OF HOLE (mm)	POST THREAD SIZE
H50	25	2	6 +/-0.3	M4
25AT10	12 +/-0.2	2	6 +/-0.3	M4
32AT10	20 +/-0.2	2	6 +/-0.3	M4
50AT10	25 +/-0.2	2	6 +/-0.3	M4
75AT10	25 +/-0.2	3	6 +/-0.3	M4
100AT10	25+/-0.2	4	6 +/-0.3	M4
25AT20	-	1	7.5 +/-0.3	M5
32AT20	20 +/-0.2	2	7.5 +/-0.3	M5
50AT20	25 +/-0.2	2	7.5 +/-0.3	M5
75AT20	25 +/-0.2	3	7.5 +/-0.3	M5
100AT20	25 +/-0.2	4	7.5 +/-0.3	M5

MODIFICATIONS

PROGRESSIVE PIN JOINT SYSTEM (PPJ)

Megadyne's' Progressive Pin Joint (PPJ) system provides a simple, reliable method of placing a timing belt on an application without the need to tear apart the conveyor or join the belt endless online. PPJ is a perfect option for parallel path belts where the load being moved is spread across several belts. Installation and replacement of belts is fast, simple and cost-saving.

PPJ IS AVAILABLE FOR THE FOLLOWING BELT TYPES:

BELT TYPE	WIDTH (mm)	BELT TYPE	WIDTH (mm)	
T10/AT10	25	T20/AT20/ATG20	75	
TG10 K6	25	MTD8/RPP8	20	
T10/AT10	32	MTD8/RPP8	30	
T10/AT10	50	MTD8/RPP8	50	
T10/AT10	75	MTD8/RPP8	85	
T10/AT10	100	MTD8/RPP8	100	
TG10/ATG10	50	MTD14	55	
T20/AT20	32	MTD14	85	
T20/AT20	50	H075	19.05 (0.75 in)	
HG150	38.1 (1.5 in)	H100	25.4 (1 in)	
HG200	50.8 (2 in)	H200	50.8 (2 in)	

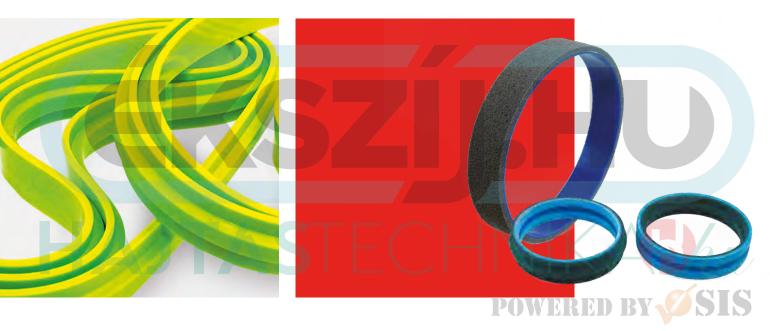
For different widths please consult Megadyne.

AVAILABLE PITCHES AND STEEL CORD TYPES:

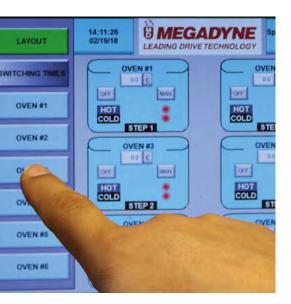
STANDARD HIGH FLEX STAINLESS

T10, AT10, TG10 ATG10, T20 AT20, MTD8, RPP8

T10, AT10 T20, AT20


T10, AT10 TG1<mark>0, ATG</mark>10, MTD<mark>14</mark>

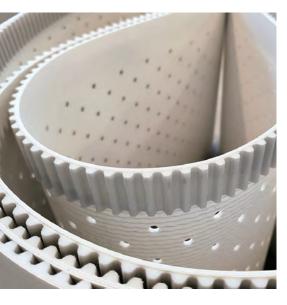
If Kevlar® cords are required please consult Megadyne.


AVAILABLE COVERS ON PPJ BELTS:

Contact Megadyne to discuss other cover material options.

ENGINEERED BELTS HYBRID BELTS

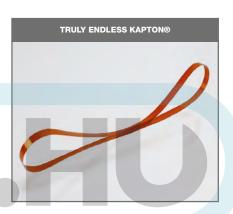
ENGINEERED BELTS


Megadyne offers several advanced engineered elastomers and processes to produce high-precision belts for applications within packaging, business machines, aerospace and medical applications.

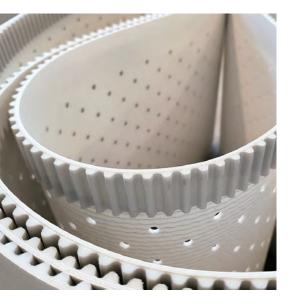
These elastomers offer performance benefits ranging from high-temperature resistance to outstanding flex fatigue to electrical insulation. Elastomers within this class can be spun cast, moulded, wrapped or ultrasonically welded to deliver the performance needed in the toughest applications.

FILM BELTS SPIN CASTING

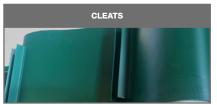
			or in oadring	
MATERIAL	MYLAR®	KAPTON®	HYTREL®	URETHANE
HARDNESS (SHORE A)	N/A	N/A	30/40/50/60/70	60/80
COLOURS		•		
THICKNESS RANGE	0.003-0.014"	0.001-0.005"	0.010 to 0.040"	0.020 to 0.125"
WORKING TEMP RANGE °F (°C)	-94/+320 (-70 /+160)	-148/+716 (-100 /+380)	-40/+212 (-40 /+100)	-4/+176 (-20 /+80)
WATER RESISTANCE	Good	Good	Good	Good
ABRASION RESISTANCE	Very Good	Very Good	Good	Good
OIL RESISTANCE**	Good	Very Good	Very Good	Good
FOOD CONTACT APPROVED	Yes	Yes	No	No
OTHER BENEFITS	Electrical Insulation	UL94 VO Fire Rating	High Flex Fatigue / Resistance	Hydrolytic Stability

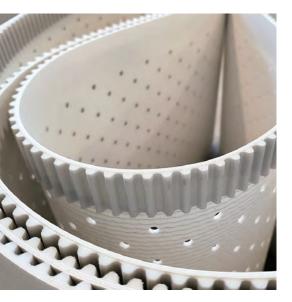

Mylar®, Kapton® and Hytrel® are registered trademarks of DuPont

PHOTOS



HYBRID BELTS


Hybrid belts deliver synchronisation and conveying in one belt design. Starting with conveyor belts, we add extruded timing belts to provide precise positioning and accurate tracking. We have successfully implemented the Hybrid solution in several markets & industry sections, which allows us to enlarge our product portfolio.


Hybrid, Hybrid Plus and Hybrid Pro belts are available with polyurethane or silicone covers and available with the following urethane belt pitches- H, T5, T10, MTD5, MTD8M, STD8M, T20, T5 BLUE FC, T10 BLUE FC, AT5, AT10, and AT20 with a base surface of Fabric and Elastoflex. Additionally, with the high-variation and flexibility of our Synthetic and Conveyor portfolio and with the enormous reworking capabilities such as hole perforating and cleat & rope welding we have the perfect solution for any type of application.

HYBRID BELTS

Hybrid Vacuum is a unique design where synchronization, and an open mesh (used for drainage or vacuum), are combined into one belt design.

SPIRAFLEX

Spiraflex grid conveyor belts are used in diaper manufacturing and to produce other hygienic products as-well-as the transportation of fresh pasta and licorice. In the Food Industry, Spiraflex can replace traditional metal wire mesh conveyor belts. In the case of conveying fresh pasta or dough, Spiraflex allows the steam sprayed by the machinery inside a tunnel, to eliminate the residual flour of the product. In the case of licorice transport, Spiraflex resists steam used to get a glossy finish on the surface of product.

